本发明公开了一种基于深度残差网络的骨科病病变分类分级方法,具体按照以下步骤实施:步骤1,离线学习,将经过专业分类并做好标记的骨科病病变图像进行预处理,然后进行深度残差神经网络训练;步骤2,在线学习,将经步骤1训练好的深度残差神经网络进行备份后部署到日常诊疗中,同时使用在线学习的训练方法,使深度残差神经网络通过日常的诊疗数据不断的自我修正。本发明的基于深度残差网络的骨科病病变分类分级方法,解决了现有卷积神经网络随着神经网络构架深度的增加,出现精度饱和随后精度下降,且离线学习的方法无法对每天产生的诊疗数据加以利用,因而无法随着诊疗数目的增加进行自我修正的问题。