本发明公开了一种基于深度学习风格迁移的服饰图像艺术化生成方法,包括如下步骤:步骤1:将内容图和风格图放入训练好的19层VGG网络中得到内容表示和风格表示;步骤2:将获得的内容表示和风格表示使用VGG网络的滤波器对其进行编码得到特征映射,再通过自适应规范层对其进行归一化处理;步骤3:将归一化处理后的噪声图片的特征图分别与内容图片和风格图片的特征图作对比求差值分别计算内容图损失、风格图损失、总损失函数;步骤4:根据获得的总损失函数对网络进行训练,通过转换网络解码生成结果图。本发明一种基于深度学习风格迁移的服饰图像艺术化生成方法,解决了现有服饰图像画面风格单一、转换速度慢的问题。