政策资讯

一种基于图卷积神经网络对软件缺陷预测方法

专利类型:
申请号/专利号:
CN201910973406.0
申请人(专利权人):
孟海宁
行业类别:
技术成熟度:
公布时间:
证书状态:
授权
交易价格:
45000元
我要咨询

摘要详情

技术摘要

权利要求书

技术附图

交易流程

委托经理人

本发明公开了一种基于图卷积神经网络的软件缺陷预测方法,利用GCN算法训练模型对输入的代码文件进行缺陷类型的预测。本发明通过Bert模型将软件的源代码文件进行特征提取,并通过构建抽象语法树实现了源代码中的文件之间的关联,然后使用关联算法Apriori将代码中可能具有缺陷传递的文件进行关联,最后将源文件的特征向量与特征向量之间的关联关系作为邻接矩阵作为输入,实现了对GCN模型的训练。当判断软件代码文件是否存在缺陷时,将代码文件自动转化为其对应的特征向量向量作为模型的输入,GCN模型输出代码文件可能存在缺陷,从而大大减少了测试人员的工作量。

我要咨询

商标号:
联系人:
联系电话:
商标名称:
报价:
需求描述:
提交
服务
客服
电话:18504815395
邮箱:965848622@qq.com
地址:呼和浩特市赛罕区昭乌达路70号内蒙古科技大厦906
微信
招聘
返回顶部